Skip to main content
Log in

On the Formation of TiO2 Nanoparticles Via Submerged Arc Discharge Technique: Synthesis, Characterization and Photocatalytic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We report a simple and inexpensive synthesis route of TiO2 nanoparticles using electrical arc discharge between titanium electrodes in oxygen bubbled deionized (DI) water followed by heat treatment. The resulting nanoparticles were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD patterns demonstrate formation of TiO2 phase in oxygen bubbled water after heat treatment and dominance of rutile to anatase phase. The size and morphology of TiO2 nanoparticles were studied using different arc currents as a crucial parameter in properties of final product. Microscopic studies reveal nanosize spherical particles. DLS results indicate that at 20 A arc current, the size of the particles is about 37 nm and increases to 59 nm by increasing the arc current up to 40 A. Photodegradation of Rhodamine B (Rh. B) as a standard pollution shows that heat treated samples in oxygen bubbled water for 2 h at 500 °C, have more photocatalytic activity due to enhancement in crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, and R. Zhao (2009). Atmos. Environ. 43, 2229.

    Article  CAS  Google Scholar 

  2. J. Zhao and X. Yang (2003). Build. Environ. 38, 645.

    Article  Google Scholar 

  3. M. Takeuchi, S. Sakai, A. Ebrahimi, M. Matsuoka, and M. Anpo (2009). Top. Catal. 52, 1651.

    Article  CAS  Google Scholar 

  4. M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo (2007). Appl. Catal. 325, 1.

    Article  CAS  Google Scholar 

  5. A. A. Ashkarran and M. R. Mohammadizadeh (2008). Mater. Res. Bull. 43, 522.

    Article  CAS  Google Scholar 

  6. A. A. Ashkarran and M. R. Mohammadizadeh (2007). Eur. Phys. J. Appl. Phys. 40, 155.

    Article  CAS  Google Scholar 

  7. Y. Cong, J. Zhang, F. Chen, M. Anpo, and D. He (2007). J. Phys. Chem. C 111, 10618.

    Article  CAS  Google Scholar 

  8. Y. Cong, J. Zhang, F. Chen, and M. Anpo (2007). J. Phys. Chem. C 111, 6976.

    Article  CAS  Google Scholar 

  9. M. Yan, F. Chen, J. Zhang, and M. Anpo (2005). J. Phys. Chem. B 109, 8673.

    Article  CAS  Google Scholar 

  10. I. M. Arabatzis and P. Falaras (2003). Nano Lett 3, 249.

    Article  CAS  Google Scholar 

  11. A. I. Kontos, I. M. Arabatzis, D. S. Tsoukleris, A. G. Kontos, M. C. Bernard, D. E. Petrakis, and P. Falaras (2005). Catal. Today 101, 275.

    Article  CAS  Google Scholar 

  12. R. Sui, J. L. Young, and C. P. Berlinguette (2010). J. Mater. Chem. 20, 498.

    Article  CAS  Google Scholar 

  13. J. Zhang, X. Xiao, and J. Nan (2010). J. Hazard. Mater. 176, 617.

    Article  CAS  Google Scholar 

  14. H. W. Wang, C. H. Kuo, H. C. Lin, I. T. Kuo, and C. F. Cheng (2006). J. Am. Ceram. Soc. 89, 3388.

    Article  CAS  Google Scholar 

  15. R. Inaba, T. Fukahori, M. Hamamoto, and T. Ohno (2006). J. Mol. Catal. A: Chem. 260, 247.

    Article  CAS  Google Scholar 

  16. B. Sun, S. Q. Sun, T. Li, and W. Q. Zhang (2007). J. Mater. Sci. 42, 10085.

    Article  CAS  Google Scholar 

  17. S. Deki, A. Nakata, and M. Mizuhata (2004). Electrochemistry 72, 452.

    CAS  Google Scholar 

  18. I. Alexandrou, H. Wang, N. Sano, and G. A. J. Amaratunga (2004). J. Chem. Phys. 120, 1055.

    Article  CAS  Google Scholar 

  19. D. Bera, G. Johnston, H. Heinrich, and S. Seal (2006). Nanotechnology 17, 1722.

    Article  CAS  Google Scholar 

  20. D. Bera, S. C. Kuiry, M. McCutchen, S. Seal, H. Heinrich, and G. C. Slane (2004). J. Appl. Phys. 96, 5152.

    Article  CAS  Google Scholar 

  21. N. Sano (2004). Mater. Chem. Phys. 88, 235.

    Article  CAS  Google Scholar 

  22. N. Sano (2005). Carbon 43, 450.

    Article  CAS  Google Scholar 

  23. I. Alexandrou, N. Sano, A. Burrows, R. R. Meyer, H. Wang, A. I. Kirkland, C. J. Kiely, and G. A. J. Amaratunga (2003). Nanotechnology 14, 913.

    Article  CAS  Google Scholar 

  24. W. T. Yao, S. H. Yu, Y. Zhou, J. Jiang, Q. S. Wu, and L. Zhang (2005). J. Phys. Chem. B 109, 14011.

    Article  CAS  Google Scholar 

  25. D.-C. Tien, K.-H. Tseng, C.-Y. Liao, J.-C. Huang, and T.-T. Tsung (2008). J. Alloys Compd. 463, 408.

    Article  CAS  Google Scholar 

  26. A. A. Ashkarran, A. Iraji Zad, M. M. Ahadian, and M. R. Hormozi Nezhad (2009). Eur. Phys. J. Appl. Phys. 48, 10601.

    Article  Google Scholar 

  27. A. A. Ashkarran, A. Iraji zad, S. M. Mahdavi, M. M. Ahadian, and M. R. Hormozi nezhad (2009). Appl. Phys. A 96, 423.

    Article  CAS  Google Scholar 

  28. K.-H. Tseng, J.-C. Huang, C.-Y. Liao, D.-C. Tien, and T.-T. Tsung (2009). J. Alloys Compd. 472, 446.

    Article  CAS  Google Scholar 

  29. A. A. Ashkarran, A. Iraji Zad, M. M. Ahadian, and S. A. Mahdavi Ardakani (2008). Nanotechnology 19, 195709.

    Article  CAS  Google Scholar 

  30. A. A. Ashkarran, A. Iraji zad, S. M. Mahdavi, and M. M. Ahadian (2009). Mater. Chem. Phys. 118, 6.

    Article  CAS  Google Scholar 

  31. S. M. Liu, M. Kobayashi, S. Sato, and K. Kimura (2005). Chem. Commun. 37, 4690.

    Article  Google Scholar 

  32. L. C. Chen (2010). J. Alloys Compd. 495, 476.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to express their special thanks to Dr. Mahmoud Ghoranneviss for helping in analyzes and useful discussions and Dr. Yousef Seyed Jalili for helping in editing of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ashkarran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkarran, A.A., Kavianipour, M., Aghigh, S.M. et al. On the Formation of TiO2 Nanoparticles Via Submerged Arc Discharge Technique: Synthesis, Characterization and Photocatalytic Properties. J Clust Sci 21, 753–766 (2010). https://doi.org/10.1007/s10876-010-0333-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-010-0333-7

Keywords

Navigation